# INDIAN MARITIME UNIVERSITY 

(A CENTRAL UNIVERSITY, GOVT. OF INDIA)
End Semester Examination December 2018
B. Tech. (Marine Engineering)

Semester - III
Computational Mathematics (UG11T3301)

| Date: $27-12-2018$ | Max Marks: 100 |  |
| :--- | :--- | :--- |
| Time: 3 Hrs. |  | Pass Marks: 50 |
|  | PART - A | $\mathbf{( 3 \times 1 0}=\mathbf{3 0 )}$ |

## Compulsory Questions: (The symbols have their usual meanings.)

1
(a) Derive the normal equations to fit a parabola $y=a+b x+c x^{2}$.
(b) Find the normal equations required to fit the curve $y=a x^{b}$ in given set of values of $x$ and $y$.
(c) In Boolean algebra show that $\left[x \wedge\left(x^{\prime} \vee y\right)\right] \vee\left[x^{\prime} \wedge(x \vee y)\right]=y$.
(d) Use the shift operator $E$ to derive the Newton's backward interpolation formula for the function $f\left(x_{n}+p h\right)$ where $p=\left(x-x_{n}\right) / h$.
(e) Find the real root of the equation $x^{3}-2 x-5=0$ by using Regula Falsi method up to two iterations.
(f) Find the missing term in the following table:

| $x$ | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 45.0 | 49.2 | 54.1 | - | 67.4 |

(g) Two lines of regression are given by $5 y-8 x+17=0$ and $2 y-5 x+$ $14=0$. If $\sigma_{y}^{2}=16$, find (i) correlation coefficient between $x$ and $y$ and (ii) $\sigma x$
(h) Prove the axiom $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ of Boolean algebra by means of truth table.
(i) Evaluate the integral $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ using the Trapezoidal rule with 4 equal sub-intervals.
(j) Explain bubble short method with suitable example.

## PART - B

$(14 \times 5=70)$

## Answer any FIVE of the following questions

2(a) In a Boolean algebra, simplify the following:
(i) $x \vee y \wedge y \vee z \wedge y \vee z^{\prime}$,
(ii) $x \vee y \wedge\left[\left(x \wedge y^{\prime}\right) \vee y\right]^{\prime}$.
[4+4]
2(b) Draw the circuit diagrams for the Boolean function
$f=\left[\left(p_{1} \vee p_{2}\right) \vee\left(p_{1} \vee p_{3}\right)\right] \wedge\left(p_{1} \wedge p_{2}{ }^{\prime}\right)$, then simplify the function and draw the diagram of simplified resulting circuit,

3(a) Find the number of men getting wages below Rs. 15 from the following table:
$\begin{array}{lccccc}\text { Wages (in Rs.): } & 0-10 & 10-20 & 20-30 & 30-40 & \\ \text { No. of Men }: & 9 & 30 & 35 & 42 & \text { [7] }\end{array}$
3(b) Express the function $\frac{x^{2}+x-3}{x^{3}-2 x^{2}-x+2}$ as sum of partial fractions by using Lagrange's interpolation formula.

4(a) A rod is rotating in a plane. The following table gives the angle $\theta$ through which the rod has turned for different values of time $t$.

| $t$ (seconds) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta$ (radians) | 0 | 0.12 | 0.48 | 1.10 | 2.00 | 3.20 |

Find the angular velocity of rod, when $t=0.2$ second.
4(b) A river is 80 ft wide. The depth $y$ (in feet) at a distance $x \mathrm{ft}$ from one bank is given by the following table:

| $x$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 4 | 7 | 9 | 12 | 15 | 14 | 8 | 3 |

Find approximately the area of the cross section of river.
5(a) Find the real root of the equation $x^{4}-x=9$ by Newton Raphson Method correct to three decimal places.

5(b) Write an algorithm to sum first $n$ integers and draw its flow chart.

6(a) Using Runge-Kutta method of fourth order, solve the differential equation $\frac{d y}{d x}=x y+y^{2}$ with $y(0)=1$ at $x=0.1,0.2$.

6(b) If three uncorrelated variables $x_{1}, x_{2}$ and $x_{3}$ have same variance, Find the correlation coefficient between $x_{1}+x_{2}$ and $x_{2}+x_{3}$.

7(a) Apply Taylor series method to obtain approximate value of $y$ at $x=0.2$ for the differential equation $\frac{d y}{d x}=2 y+3 e^{x}$ with initial condition $y(0)=0$.
[7]
7(b) If $V$ ( $\mathrm{km} / \mathrm{hr}$ ) and $R(\mathrm{~kg} / \mathrm{ton})$ are related by a relation of the type $R=a+b V^{2}$, Find by the method of least squares $a$ and $b$ with the help of following table:

| $V$ | 10 | 20 | 30 | 40 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $R$ | 8 | 10 | 15 | 21 | 30 |

8(a) The following results are obtained from records of age $x$ and blood pressure $y$ of a group of 10 people:
$\bar{x}=53, \bar{y}=142, \sigma_{x}^{2}=130, \sigma_{y}^{2}=165$ and $\sum(x-\bar{x})(y-\bar{y})=1220$.
Find the appropriate regression equation and estimate the blood pressure of a man of age 45 years.

8(b) Prove that $u_{0}+u_{1} x+u_{2} x^{2}+\ldots \infty=\frac{u_{0}}{1-x}+\frac{x \Delta u_{0}}{(1-x)^{2}}+\frac{x^{2} \Delta^{2} u_{0}}{(1-x)^{3}}+\ldots \infty$. Hence sum the series $1.2+2.3 x+3.4 x^{2}+\cdots \infty$.

